Рис. 97. Устройство трехфазного двигателя серии 4А: 1 – вал; 2 – фиксирующая шпонка; 3 – подшипник; 4 – статор; 5 – обмотка статора; 6 – ротор; 7 – вентилятор; 8 – коробка выводов; 9 – лапа.
Выпускают их однофазными и многофазными, а потребляемая мощность находится в диапазоне от 0,2 до 200 кВт и более.
Конструкция двигателей постоянного тока также включает в себя подвижную часть – якорь и неподвижную – статор. Обмотки статора и якоря в этих двигателях могут быть соединены последовательно, параллельно и комбинированно. Их неоспоримое преимущество перед двигателями переменного тока – возможность регулирования частоты вращения. Используются они в основном в промышленных установках, где существует точное ограничение частоты вращения.
В бытовых электроприборах – холодильниках, пылесосах, соковыжималках и т. п. – используются универсальные коллекторные двигатели, рассчитанные на работу как от переменного тока частотой 50 Гц (напряжением 127 и 220 В), так и от постоянного тока (напряжением 110 и 220 В).
Коллекторные двигатели обладают невысокой мощностью – до 600 Вт; максимальная частота вращения – до 8000 оборотов в минуту. Частота вращения в них регулируется изменением величины подводимого к их обмоткам напряжения: если двигатель маломощный, то изменение напряжения производят подключением реостата; для двигателей более мощных используется трансформатор.
Преимуществом коллекторных двигателей является прежде всего их универсальность. К недостаткам же следует отнести невозможность работы на малых нагрузках, то есть вхолостую (двигатель в таком режиме перегревается); низкий КПД при работе на переменном токе; возникновение радиопомех при работе двигателя. Правда, последний недостаток можно уменьшить, если обмотку возбуждения симметрировать, то есть включить с обеих сторон якоря.
Поскольку существует большое количество типов и марок электродвигателей, привести в этой книге все их технические параметры не представляется возможным. Да этого и не требуется, так как каждый двигатель заводского производства имеет технический паспорт, выполненый в виде металлической таблички, которая закрепляется непосредственно на корпусе двигателя. А вот правильно прочесть этот паспорт нужно уметь.
В паспорте двигателя указываются все его технические характеристики, необходимые для его подключения, а именно: тип двигателя; его заводской номер; вид тока, от которого работает двигатель; номинальная частота переменного тока (в Гц); номинальная полезная мощность на валу двигателя; коэффициент мощности; вид соединения обмотки статора и необходимое в каждом из этих случаев напряжение сети (в В); потребляемый ток при номинальной нагрузке (в А); режим работы по длительности; частота вращения при номинальной нагрузке; номинальный коэффициент полезного действия; степень защиты; а также ГОСТ, класс изоляции обмотки, масса и год выпуска.
Доскональное описание устройства всех типов электродвигателей целью этой книги не является. Поскольку ремонт электродвигателей – дело сложное, требующее не только специальных знаний, но и наличия нужного оборудования, то его лучше поручить мастерам. Задачей же домашнего электрика является обеспечение правильной эксплуатации исправного двигателя.
Несомненно, домашний электрик должен уметь правильно подключить электродвигатель к сети, и основная загвоздка здесь – количество выводов различного рода обмоток: их достаточно много, в них трудно разобраться. Большую помощь окажет знание условных унифицированных обозначений, применимых к отечественным электродвигателям.
Наибольшую сложность представляет подключение двигателя постоянного тока; здесь количество выводов может быть больше десяти. Обозначаются они начальными буквами слов, отражающих их функциональное назначение:
Я1 и Я2 – начало и конец обмотки якоря;
К1 и К2 – начало и конец компенсационной обмотки;
Д1 и Д2 – начало и конец обмотки добавочных полюсов;
С1 и С2 – начало и конец последовательной (сериесной) обмотки возбуждения;
Ш1 и Ш2 – начало и конец параллельной (шунтовой) обмотки возбуждения;
У1 и У2 – начало и конец уравнительного провода соответственно.
Разобраться с двигателями переменного тока, имеющими значительно меньшее количество выводов, намного проще:
– если обмотки статора трехфазных двигателей переменного тока соединены звездой, то начало статорных обмоток обозначается как С1, С2 и С3 (соответственно первой, второй и третьей фазы); нулевая точка – 0. Если статорная обмотка имеет шесть выводов, то обозначения С4, С5 и С6 указывают на концы обмоток (соответственно первой – 4, второй – 5 и третьей фазы – 6);
– если соединение обмоток статора осуществляется треугольником, то обозначения С1, С2 и С3 определяют зажимы соответственно первой, второй и третьей фаз.
Трехфазные асинхронные двигатели имеют выводы роторных обмоток, обозначаемые как Р1, Р2 и Р3 (соответственно первой, второй и третьей фаз), 0 обозначает нулевую точку. Выводы обмоток асинхронных многоскоростных двигателей обозначаются: для 4 полюсов – 4С1, 4С2 и 4С3; для 8 полюсов – 8С1, 8С2 и 8С3. В асинхронных однофазных двигателях выводы главной обмотки обозначаются: С1 – начало, С2 – конец. Для выводов пусковой обмотки этих же двигателей приняты обозначения: П1– начало, П2 – конец.
Выводы обмотки возбудителя синхронных двигателей, которые носят название индукторов, обозначаются как И1 и И2 (соответственно начало и конец обмотки).
Для того чтобы при подсоединении выводов обмоток коллекторных машин было как можно меньше путаницы, на заводах-изготовителях и в ремонтных мастерских их помечают разными цветами: выводы обмотки якоря – белым цветом; последовательной обмотки возбуждения – красным (если она имеет дополнительный вывод, то его помечают красным и желтым цветами); параллельной обмотки возбуждения – зеленым. Для определения начал и концов обмоток последние всегда помечаются добавленным к основному черным цветом; таким образом получается, что начала обмоток имеют одноцветные пометки, а концы – двухцветные.
Цветовая пометка выводов обмоток электродвигателей является дополнением к буквенной. Однако в электромоторах малой мощности обмотки выполняются проводами, толщина которых не позволяет применить буквенное обозначение, поэтому цветовая маркировка является здесь основной и единственной.
В трехфазных двигателях начало первой фазы обозначается желтым цветом, начало второй – зеленым, начало третьей – красным, черный цвет указывает на нулевую точку. При шести выводах маркировка начала обмоток сохраняется, а маркировка концов производится основным цветом с добавлением черного.
Выводы обмоток асинхронных однофазных двигателей в маркировке имеют следующие цвета: начало главной обмотки обозначается красным проводом, начало пусковой обмотки – синим, в маркировке концов обмоток, как обычно, помимо основного цвета, присутствует черный.
Как известно, наши электрические сети не отличаются постоянством параметров тока. Поэтому необходимо знать, как меняются параметры электродвигателей при условиях, отличных от номинальных.
Если в сети питания трехфазного асинхронного двигателя происходит понижение напряжения (при сохранении номинальной частоты переменного тока), его вращающий момент уменьшается, а коэффициент полезного действия падает. При повышении напряжения (и сохранении номинальной частоты тока) вращающий момент растет, что приводит к перегреву двигателя и к уменьшению коэффициента полезного действия.
Как говорится, от перемены мест слагаемых сумма не изменяется. Поэтому если постоянным остается напряжение, а частота переменного тока уменьшается, то КПД по-прежнему ухудшается: частота вращения двигателя уменьшается, и он начинает греться. К аналогичному результату приводит и повышение частоты переменного тока при сохранении номинального напряжения.
Электродвигатели, как известно, бывают однофазными и трехфазными; бытовая электрическая сеть имеет одну фазу. Возникает вопрос: можно ли подсоединить трехфазный двигатель к однофазной сети. Несмотря на кажущееся неразрешимым противоречие, такое подключение осуществить можно, причем существует несколько способов.
Первые два способа подключения электродвигателей (рис. 98) основаны на использовании рабочего (Ср) и пускового (Сп) конденсаторов.
Рис. 98. Схема подключения трехфазного электродвигателя к однофазной сети с помощью конденсаторов: а – при включении электродвигателя «в звезду»; б – при включении электродвигателя «в треугольник».
Пусковой конденсатор увеличивает пусковой момент, и после пуска двигателя его отключают. Но если пуск двигателя осуществляется без нагрузки, то конденсатор Сп в цепь не включают.
Для рабочего конденсатора, включаемого в цепь, необходимо рассчитать емкость. Расчет производится по формуле: Ср = К (Iном/U), где Ср – рабочая емкость конденсатора для номинальной нагрузки (в микрофарадах – мкФ); Iном – номинальная сила тока (в амперах – А); U – номинальное напряжение в однофазной сети (в вольтах – В); К – коэффициент, который зависит от схемы включения двигателя. При включении электродвигателя «в звезду» К = 2800, при включении «в треугольник» К = 4800.
За номинальную силу тока и напряжения принимают значения указанных параметров, приведенных в техническом паспорте электродвигателя.
Для подключения трехфазных двигателей к однофазной сети с помощью конденсаторов используются следующие их типы: КБГМН (бумажный, герметический, в металлическом корпусе, нормальный), БГТ (бумажный, герметический, термостойкий), МБГЧ (металлобумажный, герметический, частотный).
Если возникает необходимость произвести изменение направления вращения электродвигателя (реверсирование), то это легко сделать, переключив сетевой провод с одного зажима конденсатора на другой.
Пусковые конденсаторы могут иметь следующие технические параметры: напряжение на конденсаторе при номинальной нагрузке должно быть равно напряжению в сети (а при работе двигателя с недогрузкой напряжение на конденсаторе должно быть в 1,15 раза больше напряжения в сети); пусковая емкость должна составлять 2,5–3 рабочей емкости.
В качестве пускового конденсатора чаще всего применяется дешевый электролитический конденсатор типа ЭП. Но при использовании электролитического конденсатора следует помнить, что он обладает большим током разряда, оставаясь заряженным даже после отключения напряжения. Поэтому после каждого отключения конденсатор необходимо разрядить с помощью какого-либо сопротивления, например нескольких ламп накаливания, соединенных последовательно.
Использование конденсаторов для включения трехфазного двигателя в однофазную сеть весьма эффективно, поскольку позволяет получить мощность, составляющую 65–85 % от той, что указана в паспорте двигателя. Но здесь могут возникнуть затруднения с подбором нужной емкости конденсаторов. Поэтому гораздо большее распространение получили способы включения с применением активных сопротивлений (рис. 99).
Рис. 99. Схема включения трехфазного электродвигателя в однофазную сеть с помощью активного сопротивления: а – включение электродвигателя «в треугольник»; б – включение электродвигателя «в звезду».
Непосредственно перед подключением электродвигателя к однофазной сети следует включить пусковое сопротивление; отключают пусковое сопротивление только после того, как двигатель достигнет частоты вращения, близкой к номинальной.
К сожалению, при использовании способов включения трехфазного двигателя в однофазную сеть с помощью активного сопротивления можно получить от двигателя мощность, не превышающую половины его номинальной.
В домашней мастерской, оснащенной станками с электродвигателями, возможно, потребуется подсоединить и подключить к сети двигатели постоянного тока. Для этого существует несколько схем.
Наибольшее распространение получила схема включения с помощью пускового реостата, понижающего пусковой ток, поскольку при включении двигателя возникает пусковой ток, который превышает номинал в 10–20 раз. Обмотка электродвигателя может попросту не выдержать, и это приведет к выходу из строя как самого двигателя, так и других элементов цепи.
Подключают пусковой реостат последовательно с цепью якоря (рис. 100).
Рис. 100. Схема включения в сеть двигателя постоянного тока: Л – зажим, соединенный с сетью; М – зажим, соединенный с цепью возбуждения; Я – зажим, соединенный с якорем; 1 – дуга; 2 – рычаг; 3 – рабочий контакт.
Такая схема наиболее приемлема для двигателей мощностью более 0,5 кВт.
Величина пускового сопротивления реостата рассчитывается по формуле:
где Rп – пусковое сопротивление реостата (Ом); U – напряжение сети (110 либо 220 В); Iном – номинальный ток двигателя (А); Rя – сопротивление обмотки якоря (Ом).
Порядок включения в сеть двигателя постоянного тока следующий:
– рычаг на реостате устанавливают на холостой контакт – 0;
– включают сетевой рубильник и переводят рычаг реостата на первый промежуточный контакт.
При этом двигатель возбудится, а в цепи якоря потечет пусковой ток, величина которого будет зависеть от большого сопротивления, складывающегося из всех четырех секций пускового реостата;
– с увеличением частоты вращения якоря пусковой ток должен уменьшиться, что позволит уменьшить и пусковое сопротивление; для этого переводят рычаг реостата на второй, затем на третий контакт и т. д., пока он не окажется на рабочем контакте (рычаг реостата нельзя долго держать на промежуточных контактах, так как пусковые реостаты рассчитаны на непродолжительное время работы и задержка их в таком режиме приводит к перегреву и выходу из строя).
Существует и порядок отключения двигателей постоянного тока от сети, поскольку выключаются они не сразу: сначала рукоятку реостата переводят в крайнее левое положение (разумеется, двигатель при этом отключится, но обмотка возбуждения все же останется замкнутой на сопротивление реостата) и только затем отключают питание двигателя. Если пренебречь подобным порядком отключения и выключить электродвигатель сразу, то в момент размыкания цепи в ней может возникнуть такое большое напряжение, что двигатель выйдет из строя.
Тот, кто по роду своей деятельности или в силу природного любопытства, имел дело с двигателями постоянного тока, непременно должен был обратить внимание на постоянное искрение, присутствующее на коллекторе двигателя во время его работы.
Само по себе искрение необязательно свидетельствует о неисправности двигателя или о невозможности его эксплуатации, поскольку причины возникновения искрения самые различные: от присутствия почернения на коллекторе или нагара на щетках до неправильной их установки и плохого прилегания щеток к коллектору или повышенной вибрации щеточного устройства.
Практика показывает, что полностью избавиться от искрения на коллекторе не удается даже в тех случаях, если щетки двигателя установлены абсолютно правильно, по заводским меркам, с плотным прилеганием их к коллектору; если отсутствует вибрация, если поверхность коллектора и щеток не имеет загрязнений, почернений и нагаров.
Задача домашнего электрика, работающего с двигателем постоянного тока, – научиться правильно определять степень допустимого искрения на коллекторе. А для этого существуют определенные нормы искрения, зная которые можно без труда отличить исправный двигатель (несмотря на наличие искрения) от того, которому нужна профилактика в ремонтной мастерской.
Нормы определяются по специально разработанной шкале классности, так называемым классам коммутации (табл. 9).
Эксплуатация двигателей 1, 1,25 и 1,5 классов коммутации возможна без ограничений.
Двигатели с искрением 2-го класса коммутации можно эксплуатировать лишь в том случае, если оно происходит только в моменты резкого увеличения нагрузки либо при работе в режиме перегрузки.
Третий класс коммутации ограничивает возможность дальнейшей эксплуатации двигателя. Если и коллектор, и щетки находятся в пригодном для работы состоянии, то такое искрение допустимо только в момент прямого включения без использования реостатных ступеней или реверсирования машины.
Опытный электрик может определить степень возможности дальнейшей эксплуатации электромотора не только по характеристике искрения и состоянию коллектора и щеток, но и по цвету искр, появляющихся на коллекторе:
– небольшие голубовато-белые искры, практически всегда присутствующие на бегающем крае щетки, допускают дальнейшую эксплуатацию двигателя без каких-либо ограничений; такие искры характерны для 1, 1,25 и 1,5 классов коммутации;
– появление удлиненных искр желтоватого оттенка свидетельствует о принадлежности искрения ко 2-му классу коммутации; дальнейшая эксплуатация двигателя возможна с небольшими оговорками;
– если искры приобрели зеленую окраску, а на рабочей поверхности щеток присутствуют частички меди, то эксплуатировать электродвигатель далее нельзя, поскольку имеется механическое повреждение коллектора двигателя.
Единственная ремонтная операция, за которую может взяться домашний электрик, не имеющий специальных знаний по электротехнике, – это замена изношенных щеток. Для этого необходимо снять крышку корпуса мотора и колпачки щеткодержателей, отсоединить изношенные щетки и установить новые, соблюдая тип соединения с контактами (скрутка или пайка).
Прочий же ремонт электродвигателей настоятельно рекомендуется поручить специалистам-профессионалам, поскольку двигатели и переменного, и постоянного тока – механизмы достаточно сложные и дорогостоящие, чтобы производить на них опыты и эксперименты.
При наличии инженерно-конструкторской жилки многое можно смастерить своими руками. В этой книге предлагается несколько достаточно простых схем, собрав которые можно не только получить удовольствие от занятия любимым делом, но и сделать вполне конкретные устройства, полезные с чисто практической точки зрения.
Сконструировали все эти приборы школьники из тульского клуба научно-технического творчества молодежи «Электрон». В свое время схемы этих устройств были опубликованы в периодических изданиях, но, поскольку издания в основном были предназначены для узкого круга специалистов, широкой известности эти устройства не приобрели.
Предлагаем широкой аудитории читателей воспользоваться схемами этих устройств.
Первым пунктом в порядке осуществления любого вида соединения проводов значится: «Освободить концы соединяемых проводов от изоляции на длину…». Для этого обычно предлагается использовать: нож, ножницы, бокорезы, но в результате такой зачистки, как правило, повреждается и сама металлическая жила. К тому же, если в изоляции провода имеется шелковая оплетка, удалить ее этими инструментами очень трудно.
А что если попробовать автоматизировать операцию по удалению изоляции с монтажных электропроводов? Приспособление, схема которого приведена на рис. 101, позволит не только быстро и качественно удалить с концов проводов изоляционную оболочку, но и сохранить их металлические жилы в неприкосновенной целостности.
Рис. 101. Устройство для удаления изоляции с монтажных проводов: 1 – нихромовая проволока; 2 – держатель; 3 – винт; 4 – текстолитовая пластина; 5 – кнопка; 6 – винт; 7 – токопроводящие провода; 8 – хомут.
Потребуется: текстолитовая пластина толщиной 6–10 мм и площадью около 120 х 30 мм; нихромовая проволока диаметром 0,7–0,9 мм, держатели, винты, кусочки электрического провода, кнопка и металлический хомут. Сборка приспособления не составит труда даже для начинающего электрика: все детали монтируются на текстолитовой пластине с помощью винтов. Теперь необходимо позаботиться о питании приспособления электрическим током. Напрямую включить его в домашнюю электросеть нельзя, из-за того что тонкая нихромовая проволока не в состоянии выдержать напряжение 220 В. Поэтому подключают устройство в сеть через трансформатор, вторичная обмотка которого рассчитана на напряжение 4–5 В при токе 4–5 А.
Если такого трансформатора под рукой нет, его можно намотать самостоятельно: за основу берется трансформатор марки ТВК-110Л-1, с которого удаляются все вторичные обмотки; затем наматывается новая вторичная обмотка, состоящая из 45 витков провода ПЭВ-1 диаметром 1,2 мм. Во время работы приспособления первичная обмотка трансформатора всегда должна быть подсоединена к сети, а ко вторичной кратковременно подключают нихромовую проволоку (замыкая с помощью кнопки цепь).
Работает устройство так: на 2–3 секунды нажимают кнопку, конец обрабатываемого провода вводят внутрь рабочей части нихромовой проволоки, провод поворачивают на 1–1,5 оборота. Отрезанную таким образом изоляцию легко удалить с помощью пинцета.
Всем, кто когда-либо сталкивался с пайкой (даже если это было еще в детстве, в кружке «Юный техник»), прекрасно известно, как важно правильно подобрать мощность электропаяльника для осуществления паяных соединений. Ведь большая мощность дает большую температуру паяльного жала, а перегрев паяльника приводит к окислению припоя, паяные соединения получаются недостаточно прочными, а при пайке полупроводниковых приборов возможно их повреждение.
Определить на глазок степень нагрева паяльника не всегда удается даже опытному мастеру, не говоря уже о начинающих электротехниках. На помощь может прийти регулятор, позволяющий в широких пределах изменять подводимую к паяльнику мощность (рис. 102).
Рис. 102. Электронная схема регулятора мощности электропаяльника и печатная плата для сборки.
Все детали регулятора мощности монтируются на печатной плате из фольгированного стеклотекстолита. Готовый прибор помещают в корпус подставки паяльника, изготовленный из фанеры. В корпусе необходимо укрепить розетку для подключения паяльника и вывод для подключения устройства к сети. Для удобства работы на крышке этого же корпуса можно закрепить баночки с припоем и флюсом.
К такому регулятору можно подключать паяльники мощностью от 40 до 90 Вт.
Одним из пунктов программы экономии электроэнергии значилась организация рационального освещения в малопосещаемых местах.
На рис. 103 представлена принципиальная схема автомата освещения, сборка и подключение которого к сети раз и навсегда решит вопрос экономии электроэнергии на этом участке.
Рис. 103. Электронная схема автомата освещения.
Особенно удобно это устройство для лестничного освещения в подъездах многоэтажных домов и для наружного освещения во дворах частных домов.
Подобный автомат действует на достаточно простом принципе зарядки и разрядки конденсатора: при нажатии и отпускании кнопки S1 освещение начинает работать, так как на устройство Е1 начинает подаваться питание; конденсатор С2 на этот момент включения разряжен; по мере зарядки конденсатора напряжение на его верхней (по схеме) обкладке увеличивается, а когда достигает критической величины, устройство отключает освещение.
Выключатели освещения желательно оснастить неоновыми лампочками, которые помогут найти выключатель в темноте.
Технические параметры, соблюдение которых обязательно при сборке и подключении к сети автомата освещения, следующие:
– максимальная суммарная мощность лампочек в цепи – не более 2 кВт;
– тринистор V6 должен быть установлен на радиаторе с поверхностью охлаждения около 300 см2;
– диоды V7–V10 устанавливаются на четырех радиаторах площадью по 70 см2 каждый; если же мощность нагрузки не превышает 0,5 кВт, то эти диоды и тринистор можно монтировать без радиаторов.
Собранное устройство необходимо наладить (настроить) на определенное время свечения ламп. Налаживание производится путем подбора резистора R2. Если будет использоваться предложенный на схеме резистор номиналом 2,4 МОм, то длительность горения лампочек после включения будет составлять 2–3 минуты. Если необходимо, чтобы освещение работало более продолжительное время (например, нужно срочно отремонтировать замок на квартирной двери), нежели позволяет резистор, то в схеме следует предусмотреть обычный выключатель.
Устройство помещают в изолирующий корпус и размещают на одном из этажей. Кнопки S1 с неоновыми лампочками устанавливают на каждом этаже. При суммарной мощности ламп в 2 кВт сечение проводов, которыми кнопки выключателей соединяют с устройством, должно быть не менее 1,5–2 мм2.
При проявке фотографий, разведении рыбок в аквариуме, выращивании цветов или овощей в теплице достаточно часто приходится сталкиваться с проблемой поддержания постоянной температуры определенной среды (воды или воздуха). В этом может помочь еще один самодельный прибор – электронный терморегулятор (рис. 104).
Рис. 104. Электронный терморегулятор: а – схема; б – расположение деталей на монтажной плате.
Его основой является триггер (цепь из логических элементов D1.1, D1.2 и резисторов R4, R5), на вход которого поступает напряжение с делителя, состоящего из резисторов R1, R2 и R3 (резистор R3 одновременно служит датчиком температуры). Увеличение температуры среды приводит к тому, что сопротивление резистора R3 уменьшается, а следовательно, уменьшается и подаваемое на вход триггера напряжение, от чего последний переключается. При этом на выходе триггера устанавливается напряжение низкого уровня, транзистор V2 и тринистор V3 закрываются, и нагреватель, подключенный к выходу Х1, обесточивается.
При снижении температуры (при ее определенном значении) триггер вновь переключается, на этот раз включая нагреватель.
Значения температуры, при которых происходят переключения триггера, устанавливают с помощью переменного резистора R1; за точность поддержания заданной температуры отвечает сопротивление резистора R4 (чем меньше будет его сопротивление, тем более чутким будет прибор, однако использовать резистор сопротивлением меньше 10 кОм не рекомендуется). На схеме приведены марки элементов для использования терморегулятора при мощности нагревателя 200 Вт. Если же мощность нагревателя около 2 кВт, то используется тринистор марки КУ202М и диоды Д246 (4 штуки). Тринистор и диоды в этом случае устанавливают на радиаторах для теплоотвода.
Если для освещения дома используются светильники с люминесцентными лампами, то надо учитывать, что их стоимость (по сравнению с лампами накаливания) значительна. И хотя лампы дневного света служат достаточно долго, необходимость их замены время от времени все же возникает.
Продлить срок службы люминесцентных ламп и даже дать вторую жизнь лампам с перегоревшей нитью накала поможет бездроссельная схема их подключения к сетевому питанию. Схеме этой уже более четверти века, она достаточно популярна и приведена в этой книге (рис. 105).
Рис. 105. Схема сетевого питания люминесцентной лампы с перегоревшими нитями накала.
Следует отметить, что характеристики всех элементов предлагаемой схемы зависят от мощности самой лампы. Данные характеристики приведены в табл. 10.
Цепь из диодов VD1 и VD2 с конденсаторами С1 и С2 представляет собой двухполупериодный выпрямитель с удвоенным напряжением; при этом емкости конденсаторов определяют значение напряжения, поступающего на электроды лампы HL1 (зависимость прямая: чем больше емкость, тем выше напряжение).
В момент подключения к сетевому питанию импульс напряжения на выходе выпрямителя достигает 600 В. Сочетание диодов VD3 и VD4 с конденсаторами С3 и С4 дополнительно повышает напряжение зажигания, доводя его значение приблизительно до 900 В. При таком напряжении тлеющий разряд между электродами лампы возникает даже при отсутствии нитей накала. (У конденсаторов С3 и С4 есть и еще одна функция – они гасят радиопомехи, которые возникают при ионизационном разряде внутри стеклянной трубки лампы).
Лампа зажглась, ее сопротивление уменьшилось, следовательно, уменьшилось и напряжение на электродах лампы, что обеспечивает ее нормальную работу при напряжении около 220 В (обычный показатель для бытовых электросетей). Рабочее напряжение для лампы определяется номиналом резистора R1.
В принципе цепь из диодов VD3 и VD4 и конденсаторов С3 и С4 из схемы можно исключить, но в этом случае снижается пусковая надежность лампы (надежность зажигания).
Для составления подобной схемы потребуются следующие радиодетали:
– в качестве конденсаторов С1 и С2 используют бумажные или металлобумажные конденсаторы типа МБГ, КБГ, КБЛП, МБГО или МБГП, рассчитанные на напряжение 600 В;
– конденсаторы С3 и С4 могут быть типа КСГ, КСО, СГМ или СГО (со слюдяным диэлектриком). Они должны быть рассчитаны на рабочее напряжение не менее 600 В;
– резистор R1 – проволочный, его мощность должна соответствовать мощности включаемой лампы; можно использовать резисторы типа ПЭ, ПЭВ, ПЭВР;
– если в цепи присутствуют диоды марок Д205 или Д231 (при подключении ламп мощностью 80 или 100 Вт), то их установку следует производить на радиаторах (для отвода тепла).
Изложенная схема подключения люминесцентной лампы к сетевому питанию не только не имеет громоздкого дросселя и ненадежного пускателя, но и обеспечивает включение лампы без задержки, ее бесшумную работу и отсутствие неприятного мигания.
Подобные приборы, сконструированные по предложенным схемам, обычно не пылятся в чуланах и на чердаках, а занимают достойное место в электросети дома или в ящике с инструментами.
Человеку всегда было свойственно защищать себя, свой дом и своих близких, свое имущество от возможной опасности. Для этого он применял все доступные способы и методы. Сначала это были простейшие средства физической защиты, со временем они трансформировались в охранные сигнализации, а в настоящее время на человека работают и эффективно справляются с поставленными перед ними задачами по охране современные многофункциональные системы безопасности.
Покупая квартиру или дом, открывая магазин, организуя собственную фирму, человек сталкивается с проблемой организации безопасности. Перед ним встает задача обеспечения должного уровня охраны своих ценностей. При решении этой задачи каждый обращается, прежде всего, к своему жизненному опыту. На его основе, с учетом своей сферы деятельности и деловых контактов даются субъективные и объективные оценки вероятности угрозы.
При выборе средств безопасности обязательно должны быть учтены такие немаловажные факторы, как территория расположения объекта, нуждающегося в охране, и криминогенная обстановка в этом районе.
Наряду с нынешними коммерческими предприятиями и банками потребителями охранных систем являются и частные лица: предприниматели, фермеры, имеющие в своей собственности магазины, коттеджи, хозяйство и т. д. Все большее число российских коммерсантов в целях защиты своего бизнеса от нежелательного вмешательства со стороны конкурентов и криминальных структур прибегают к средствам системы безопасности. Об этом свидетельствует большой спрос на подобное оборудование.
Например, еще несколько лет назад видеодомофоны для многих из наших соотечественников представлялись чем-то экзотическим и недоступным. Сейчас же они пользуются большим спросом, их предлагают многие фирмы-производители. Наряду с квартирным видеодомофоном, который представляет собой несложную систему и стоит не так дорого, есть и охранные комплексы, используемые для охраны частных домов или коттеджных поселков. Подобные устройства по своей технической сложности не отстают от систем, которые задействуются для охраны серьезных организаций.
При их покупке потребитель неизбежно сталкивается с заключением договора на установку оборудования. Для защиты от недоброкачественной продукции действует обязательная государственная сертификация охранных систем.
Для максимально эффективной защиты объекта необходимо использовать средства, отвечающие определенным требованиям и имеющие специальный сертификат.
В России для охранных устройств действует Госстандарт России, соответствие которому должно подтверждаться сертификатами. Сертификаты выдают в Центре сертификации аппаратуры охранно-пожарной сигнализации Главного управления вневедомственной охраны МВД РФ (ЦСА ОПС ГУВО МВД РФ).
ГОСТ России учитывает особенности применения такой аппаратуры в нашей стране и по некоторым позициям предполагает, в отличие от западных стандартов, более жесткие требования. На оборудовании, которое прошло сертификацию, должен стоять соответствующий сертификации маркировочный знак (рис. 106).
Рис. 106. Российский маркировочный знак.
Так как большое количество передовых компаний-производителей средств безопасности, которые поставляют на российский рынок свои товары, являются американскими, вызывают интерес стандарты США. Выпускаемые там средства охраны должны соответствовать требованиям UL (Underwriter Laboratories Inc). Оборудование, изготовленное согласно этим требованиям, имеет маркировочный знак UL (рис. 107).
Рис. 107. Маркировочный знак UL.
Существуют международные стандарты, которыми сертифицируется оборудование, прошедшее различные этапы производства с предъявленными к нему определенными требованиями (рис. 108).
Рис. 108. Образец маркировки международного стандарта.
Госстандарт России постоянно ведет общий учет средств, имеющих различные сертификаты. В нашей стране все средства безопасности должны соответствовать прежде всего российским стандартам.
Определив нужный уровень охраны и приобретя необходимые технические средства защиты, очень важно надежно и правильно установить их. Иначе затраты окажутся неоправданными, так как неэффективно работающие устройства делают практически незащищенным то, что необходимо уберечь от возможной угрозы. Наличие слабого замка, непрочной двери, а также не отвечающая необходимым требованиям сигнализация, способствуют проникновению на объект злоумышленника и похищению ценностей.
Сегодня задача по охране того или иного объекта, как правило, решается комплексно. Системы сигнализации устанавливаются, прежде всего, с учетом таких факторов, как обеспечение надежности, удобства использования и возможность модернизации системы. Особое внимание уделяется противопожарной безопасности, так как, по статистическим данным, убытков от пожаров гораздо больше, чем от краж.
Но, несмотря на это, многие люди стараются не думать о возможных неприятностях. Надеясь на русское «авось», не побеспокоятся лишний раз о надежной защите и тем самым подвергают угрозе не только имущество, но и собственное здоровье. В некоторых случаях отсутствие надежных охранных мер может стоить и жизни – своей и близких людей.
Оценивая же уровень затрат на дополнительные защитные устройства или модернизацию старых, надо сказать, что это несоизмеримо малые средства в сравнении с ущербом от одного единственного взлома или пожара.
При оборудовании помещений охранными системами следует обратиться к специалистам, так как только они могут качественно выполнить монтажные работы. Установленные охранные устройства всегда должны правильно использоваться, для чего может понадобиться предварительная тренировка.
Стоит потратить на это некоторое время – тем самым можно избежать различных неприятностей и потрясений.
В вопросах обеспечения внешней и внутренней безопасности замки играют первостепенное значение. Они обеспечивают прежде всего сохранение ценностей, спокойствие и безопасную обстановку.
Определяющим фактором при выборе замка должна быть не цена, а степень его защиты. Накладной замок устанавливается снаружи на двери. Врезные замки, соответственно, монтируются в полотно двери. Накладные замки меньше ослабляют полотно двери, чем врезные, и требуют меньше времени на установку. Исключение составляют многоригельные врезные замки. При запирании двери таким замком его механизм выдвигает запирающие ригели в четырех направлениях. В этом случае запирание двери при достаточной ее прочности обеспечивает высокую устойчивость к взлому.
При производстве замков современные производители используют материалы, которые не поддаются сверлению. Это достигается применением сплавов вольфрама. Совершенствование замков год от года становится возможным из-за постоянной конкуренции производителей, с одной стороны, и повышения уровня мастерства взломщиков – с другой. В этой главе не рассматриваются механические замки, так как это не соответствует тематике книги.
Для повышения уровня защиты механические замки объединяются с электронными устройствами набора кода или считывателя. Для открывания двери с таким замком уже недостаточно наличия только ключа. Дверь откроется ключом только в случае правильного набора кода.
Кодовые замки могут быть как механическими, так и электронными. Но запирающее устройство в любом случае остается механическим. Механические замки меньше защищены от внешних воздействий, чем электронные.
В простых механических кодовых замках последовательность набора цифр не имеет значения. Это уменьшает количество комбинаций набора и понижает степень защиты таких замков. Они могут использоваться совместно с другими устройствами для условного доступа в помещение или при необходимости ограничения доступа куда-либо.
В отличие от механических замков электронные обеспечивают более высокую степень защиты. Число комбинаций у них не имеет ограничения. Кроме этого, для контроля доступа в помещение они могут использоваться вместе с системами сигнализации и охраны. Такой замок оснащен жидкокристаллическим дисплеем и может программироваться для организации условного доступа к охраняемому объекту.
Объединение механических и кодовых замков обеспечивает большую степень защиты и удобства пользователя.
Такой замок выполнен в виде мощного электромагнита. Крепится он на раме дверной коробки. В верхней части двери устанавливается ответная часть – пластина из стали (якорь). При подключении к питанию замок удерживает якорь с силой до нескольких сот килограммов.
С наружной стороны замок открывается дверным ключом, изнутри – кнопкой выхода. Его стоимость невысока, но он имеет один существенный недостаток: при открытой двери ригель замка будет находиться внутри него до тех пор, пока дверь не захлопнется. Может возникнуть такая ситуация, что человек нажал кнопку выхода для того, чтобы открыть дверь и выйти из помещения, но вдруг передумал выходить. Ригель при этом останется во взведенном состоянии, и дверь будет открытой, что позволит спокойно попасть в помещение постороннему человеку.
Дверные датчики с магнитными или герметичными контактами используют для определения, в каком состоянии находится дверь (открыта или закрыта). В зависимости от типа крепления датчики бывают врезными и накладными.
Домофоны получили широкое распространение в настоящее время. Их обособленное положение среди разнообразных средств и систем охраны определено сочетанием функций аудио– и видеоконтроля, а также дистанционного управления доступом на объект. С помощью домофона можно определить посетителя по голосу, по изображению и, не подходя к входной двери, впустить его.
Практика показывает, что большинство случаев мошенничества, грабежа, разбоя, связанных с завладением имуществом граждан и посягательством на их жизнь и здоровье, совершаются после того, как сами пострадавшие добровольно открыли двери. Домофон выполняет роль связующего звена между хозяином квартиры и посетителем, позволяет на безопасном расстоянии выяснить все необходимое и принять решение о допуске в дом или о заблокировании двери.
На современном российском рынке представлен широкий спектр аудио– и видеодомофонов. Большинство из них выполнены зарубежными производителями, которые десятилетиями специализируются на выпуске подобных изделий и продолжают постоянно совершенствоваться. Покупателя должен привлечь не только тщательно подобранный дизайн домофона, но и его функциональные качества. Не каждая красивая пластиковая коробка, в которую заключен сложный механизм, сможет прослужить долгое время в суровых климатических условиях. Производители учитывают особенности российского рынка и разрабатывают все более надежные устройства, которые призваны устоять не только под натиском погодных условий, но и под воздействием внешних разрушительных сил, а попросту говоря, под ударами хулиганов.
При выборе домофона необходимо учитывать не только прекрасный дизайн, но также его надежность, приспособленность к условиям предстоящей работы, и, что немаловажно, стоимость. При этом необходимо помнить, что дорого – не всегда значит качественно.
Тщательно выбирая оборудование, фирму-изготовителя или поставщика, продумывая вопросы многолетней эксплуатации и технического обслуживания, можно избежать лишних затрат.
По своему техническому исполнению домофоны подразделяются на аудиодомофоны и видеодомофоны.
Аудиодомофон обеспечивает двухстороннюю голосовую связь абонента с посетителем, что позволяет провести идентификацию последнего по его голосу.
Переговорное устройство для входной двери квартиры является простым техническим средством, способным устранить попытки взлома и грабежа, тем самым повышая безопасность жильцов. Оборудование двери переговорным устройством избавляет от необходимости лишний раз выходить из дома.
У входа в подъезд могут быть смонтированы переговорные устройства, например аудиодомофон. Он выполняет следующие функции:
– дверного звонка;
– двухсторонней связи и телефона;
– управления электрическим замком.
Корпус этого устройства может быть выполнен из пластмассы или металла. Для наружной установки используются алюминиевые корпуса со стойким покрытием, для внутренней – пластмассовые (рис. 109).
Рис. 109. Аудиодомофон.
Материалы, представленные в библиотеке взяты из открытых источников и предназначены исключительно для ознакомления. Все права на статьи принадлежат их авторам и издательствам. Если вы являетесь правообладателем какого-либо из представленных материалов и не желаете, чтобы он находился на нашем сайте, свяжитесь с нами, и мы удалим его.